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Construction of optimal supersaturated designs via
generalized Hadamard matrices
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bDepartment of Statistics, KLAS and School of Mathematics and Statistics, Northeast Normal University,
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ABSTRACT
A supersaturated design (SSD) is a factorial design whose run size is
not enough for estimating all the main effects. Such designs have
received much recent interest because of their potential in factor
screening experiments. This paper first shows that the design
obtained by the Kronecker sum of a balanced design and a general-
ized Hadamard matrix (i.e., a matrix with both itself and its transpose
being difference matrices) has some nice properties. Based on these
findings, some new methods for constructing EðfNODÞ-optimal SSDs
via generalized Hadamard matrices are developed. Meanwhile, the
non-orthogonality of the proposed designs is well controlled by the
source designs. In addition, some generalized Hadamard matrices
with nice properties are constructed for obtaining EðfNODÞ-optimal
SSDs. The proposed methods are easy to implement and many new
SSDs can then be constructed.
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1. Introduction

A supersaturated design (SSD) is a factorial design in which the number of experimen-
tal runs is not large enough for estimating all the main effects. Such designs are used in
the initial stages of industrial or scientific experiments for screening the active factors,
and are useful when there are a large number of factors under investigation while only
a very limited number of runs are available. The designs and their analysis rely on the
assumption of effect sparsity, which says that the number of relatively important effects
in a factorial experiment is small. The construction of SSDs dates back to Satterthwaite
(1959) and Booth and Cox (1962), but such designs were not studied further until the
appearance of Lin (1993, 1995) and Wu (1993). Since then, many methods have been
proposed for constructing SSDs, including multi-level and mixed-level ones. Readers
can refer to Georgiou (2014) for a brief review on the construction of SSDs up until
2012, and refer to Sun, Lin, and Liu (2011), Jones and Majumdar (2014), Xu (2015),
Chatterjee et al. (2018), and Jones et al. (2019) for some more recent construction
methods. In particular, Sun, Lin, and Liu (2011) introduced a construction based on the
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Kronecker sum of a balanced design and the transpose of a difference matrix. Many
optimal SSDs can be obtained by their method. The present paper finds that the SSD
obtained by the Kronecker sum of a balanced design and a generalized Hadamard
matrix (i.e., a matrix with both itself and its transpose being difference matrices) also
has some nice properties. Some new methods for constructing optimal SSDs via general-
ized Hadamard matrices are developed. In addition, some generalized Hadamard matri-
ces with nice properties are constructed for obtaining optimal SSDs. These are the main
contributions of the paper.
In this paper, the optimality of an SSD is measured by the EðfNODÞ criterion proposed

by Fang, Lin, and Liu (2003). Section 2 introduces the EðfNODÞ criterion. Section 3
shows that the non-orthogonality of the design which is the Kronecker sum of a bal-
anced design and a difference matrix is well controlled by that of the balanced design.
Some generalized Hadamard matrices with nice properties are introduced in Section 4,
which will be prepared to construct EðfNODÞ-optimal SSDs. The methods for construct-
ing EðfNODÞ-optimal SSDs are proposed in Section 5, along with some discussions on
the properties of the resulting designs. Section 6 contains some concluding remarks. All
proofs and some large tables are deferred to the Appendix.

2. Optimality criteria for mixed-level SSDs

A mixed-level design that has n runs and m factors with q1, :::, qm levels, respectively, is
denoted by D n; q1, :::, qmð Þ: A D n; q1, :::, qmð Þ can be expressed as an n�m matrix D ¼
dij
� �

: Let di be the ith row of D, and dj be the jth column which takes values from a set
of qj symbols, say fg1, :::, gqjg: If each column dj has the equal occurrence property of
the qj symbols, we say D is a balanced design. Throughout this paper, we only consider
balanced designs. Two columns are called fully aliased if one column can be obtained
from the other by permuting levels. When

Pm
j¼1 qj � 1ð Þ ¼ n� 1, the design is satu-

rated. When
Pm

j¼1 qj � 1ð Þ > n� 1, the design is called a supersaturated design (SSD).

When some qj’s are equal, we use the notation D n; qr11 � � � qrll
� �

: And if all the qj’s are
equal, the design is said to be symmetrical. A D n; qmð Þ is called an orthogonal array
(OA) of strength t � 2, denoted by OA n,m, q, tð Þ, if for any t columns all possible
level-combinations appear equally often. Similarly we denote a mixed-level OA of
strength t as OA n,m, qr11 � � � qrll , t

� �
, where m ¼ r1 þ � � � þ rl:

Fang, Lin, and Liu (2003) proposed the E fNODð Þ criterion for comparing mixed-level
SSDs from the viewpoint of orthogonality and uniformity. For any two columns di and
dj with levels g1, :::, gqi and h1, :::, hqj , respectively, define

fNOD di, djð Þ ¼
Xqi
a¼1

Xqj
b¼1

n ijð Þ
gahb

� n
qiqj

� �2
(1)

where n ijð Þ
gahb

is the number of (ga, hb)-pairs in di, djð Þ: If fNOD di, djð Þ ¼ 0, then columns

di and dj constitute an OA n, 2, qiqj, 2ð Þ, in addition, we call them being orthogonal to
each other. Then the E fNODð Þ criterion is defined as minimizing
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E fNODð Þ ¼
X

1�i<j�m

fNOD di, djð Þ= m m� 1ð Þ=2� �
To measure the non-orthogonality among all columns of D n; qmð Þ, Koukouvinos and

Mantas (2005) and Chen and Liu (2008) defined

f Dð Þ
max ¼ maxffNOD di, djð Þj1 � i < j � mg (2)

In addition, Chen and Liu (2008) showed that the upper bound of fNOD di, djð Þ is
n2 q� 1ð Þ=q2, which is achieved by two fully aliased columns. Therefore, for a

D n; qmð Þ, there are no fully aliased columns if f Dð Þ
max < n2 q� 1ð Þ=q2: We express this as a

lemma for convenience of reference.

Lemma 1. Let d1 and d2 be two balanced columns with n runs and q levels each, if

fNOD d1, d2ð Þ < n2 q� 1ð Þ=q2

then d1 and d2 are not fully aliased.

Besides the E fNODð Þ, there are also several other criteria for evaluating mixed-level
SSDs, such as the minimum moment aberration (Xu and Wu 2005), uniformity (Fang,
Ge, and Liu 2002b) and v2 (Liu, Fang, and Hickernell 2006; Ai, Fang, and He 2007) cri-
teria. All these criteria have close relationships (Liu, Fang, and Hickernell 2006), in par-
ticular, the E fNODð Þ and v2 criteria are equivalent for the symmetric case. The E fNODð Þ
criterion is widely used in evaluating and constructing optimal SSDs, see e.g., Liu and
Cai (2009), Chatterjee et al. (2018) and the references therein. And in this paper, we
mainly use E fNODð Þ to assess the newly constructed SSDs.
To construct E fNODð Þ optimal designs, Fang, Lin, and Liu (2003) expressed E fNODð Þ in

terms of the coincidence numbers between distinct rows. The coincidence number
between the ith (di) and jth (dj) rows is defined to be the number of k’s such that dik ¼
djk. A design with equal coincidence numbers between distinct rows is called an equidis-
tant design.
Fang et al. (2004b) presented a sufficient condition for a design being E fNODð Þ-optimal.

Lemma 2 (Fang et al. 2004b). If the difference among all coincidence numbers between
distinct rows of design D does not exceed one, then D is E fNODð Þ-optimal.

In the subsequent sections, we will investigate the coincidence numbers and the non-
orthogonality of the proposed designs, and some new E fNODð Þ-optimal designs will then
be constructed.

3. Properties of the design obtained via a difference matrix

A difference matrix, denoted by Mlq, r;q, is a lq� r array with entries from a finite
Abelian group G with q elements such that every element of G appears exactly l times
in the vector difference between any two columns of the array (Bose and Bush 1952). A
matrix M is called a generalized Hadamard matrix if and only if both M and M0 are dif-
ference matrices (Jungnickel 1979).
For two matrices B ¼ bij

� �
of order r� s and C of order k� l, their Kronecker sum is

defined to be

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 2567



B� C ¼
b11J þ C � � � b1sJ þ C

� � � � � � � � �
br1J þ C � � � brsJ þ C

0
@

1
A

where J is a k� l matrix of ones.
The following result discusses the relationship between the coincidence numbers of a

balanced design and those of the design that is the Kronecker sum of this balanced
design and the transpose of a difference matrix, which can be obtained from the proof
of Theorem 2 of Sun, Lin, and Liu (2011).

Proposition 1. Let D be a D n; qmð Þ and M be an Mlq, r;q, both defined on the same
Abelian group G, and K be a set consisting of the different values of the coincidence num-
bers between distinct rows of D, then the coincidence numbers between distinct rows of
M0 �q D take values from the set Klq [ flmg, where Klq denotes the set with elements
being lq times of those elements in K, and �q is the Kronecker sum defined on the
Abelian group G.
Meanwhile, the following theorem shows that the non-orthogonality of the design

which is the Kronecker sum of a balanced design and a difference matrix is well con-
trolled by that of the balanced design.

Theorem 1. Suppose M is an Mlq, r;q and D is a D n; qmð Þ with f Dð Þ
max, both defined on a

finite Abelian group and the entries are labeled as G ¼ fa0 ¼ 0, a1, :::, aq�1g. Define
D1 ¼ M�q D, and let m1�q d1 and m2 �q d2 be two different columns of D1, where mi

and di are the columns of M and D respectively, i¼ 1, 2. Then

fNOD m1 �q d
1,m2 �q d

2
� �

¼
0, m1 6¼ m2, d1 ¼ d2; ð3aÞ
0, m1 6¼ m2, d1 6¼ d2, with m1 ¼ 0lq or m2 ¼ 0lq; ð3bÞ
f �, otherwise ð3cÞ

8><
>:

where

f � ¼
X
a2G

X
b2G

na�x1, b�y1 þ na�x2, b�y2 þ � � � þ na�xlq , b�ylqð Þ2 � l2n2

� l2q2fNOD d1, d2ð Þ ¼ fNOD 0lq �q d
1, 0lq�q d

2
� �

Thus f D1ð Þ
max is not greater than l2q2f Dð Þ

max, where (xi, yi) is the ith row of m1,m2ð Þ and na, b
is the number of (a, b)-pairs in d1, d2ð Þ for a, b ¼ a0, a1, :::, aq�1:

Now let us see an illustrative example.

Example 1. Suppose M is a generalized Hadamard matrix M4, 4;4 shown in Table 1, and
D is an E fNODð Þ-optimal D 8; 47ð Þ shown in Table 2, in which the four levels are labeled

Table 1. An M4, 4;4:

m1 m2 m3 m4

1 00 00 00 00
2 00 01 10 11
3 00 10 11 01
4 00 11 01 10
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by binary two-dimension vectors, f00, 01, 10, 11g, the coincidence number between any

two distinct rows is 1, and f ðDÞmax ¼ fNODðdi, djÞ ¼ 4 for any 1 � i 6¼ j � 7: The design
D1 ¼ ðd11, :::, d281 Þ which is the Kronecker sum of M and D is shown in Table A.1. It is
easy to verify that the coincidence number between any two distinct rows of D1 is 4 or

7. The values of fNODðdi1, dj1Þ are listed in Table A.2, from this table we can observe that

f ðD1Þ
max ¼ 64 (far less than 192 which is achieved by two fully aliased columns),

fNODðdiþ7h
1 , diþ7l

1 Þ ¼ 0 for 1 � i � 7 and 0 � h 6¼ l < 4 (c.f, (3a)), and each column from
the first 7 columns is orthogonal to any column from the last 21 columns of D1 (c.f,
(3b)). In addition, there are also many other pairs of orthogonal columns in D1 which
can also be seen from Table A.2.

Remark 1.
(i) From Theorem 1, we know that there are no fully aliased columns in the result-

ing design D1 ¼ M�qD if there are no fully aliased columns in D, and the non-
orthogonality of D1 is well controlled by the non-orthogonality of D. Proposition
1 shows that the design generated via the Kronecker sum of a balanced design
and the transpose of a difference matrix has a simple structure on the coinci-
dence numbers. Then design M�q D achieves excellent properties of both
Proposition 1 and Theorem 1 if both M and M0 are difference matrices (i.e., M is
a generalized Hadamard matrix) and D is a balanced design. We will show the
construction of generalized Hadamard matrices in next section.

(ii) Besides the columns that are orthogonal to each other guaranteed by (3a) and
(3b) of Theorem 1, there may exist many other columns in M�q D that are also
orthogonal to others, see e.g. Table A.2.

(iii) When condition m1 ¼ m2 ¼ 0lq is not true, the upper bound l2q2fNOD d1, d2ð Þ
obtained in (3c) (which is usually far less than the one given in Lemma 1) for
fNOD m1 �q d1,m2�q d2

� �
cannot be reached in most cases, which can also be

seen from Table A.2.

4. Construction of generalized Hadamard matrices

Proposition 1 and Theorem 1 show that generalized Hadamard matrices can be used to
construct designs with nice properties. Now we present some construction methods for
such matrices, which are very useful for the construction of SSDs in the follow-
ing section.

Table 2. An EðfNODÞ-optimal Dð8; 47Þ:
Run d1 d2 d3 d4 d5 d6 d7

1 00 11 11 00 10 10 00
2 01 01 00 11 01 10 10
3 11 10 10 00 00 01 10
4 11 00 11 10 01 00 01
5 10 00 01 11 11 01 00
6 01 11 01 01 00 11 01
7 10 10 00 01 10 00 11
8 00 01 10 10 11 11 11
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First, we introduce the concept of Galois Field. The set of residues modulo a prime
number p, f0, 1, :::, p� 1g, forms a field of p elements under addition ‘þ’ and multipli-
cation modulo p, which is called a Galois field denoted by GF(p). A Galois field of order
q ¼ pu for any prime number p and any positive number u can be obtained as follows.
Let g xð Þ ¼ b0 þ b1x þ � � � þ buxu, with bj 2 GF pð Þ and bu ¼ 1, be an irreducible poly-

nomial of degree u. Then the set of all polynomials of degree u – 1 or lower, fa0 þ
a1x þ � � � þ au�1xu�1jaj 2 GF pð Þg, is a Galois field GF puð Þ of order pu under addition
and multiplication of polynomials modulo g(x). For any polynomial f(x) with coeffi-
cients from GF(p), there exist unique polynomials q(x) and r(x) such that f xð Þ ¼
q xð Þg xð Þ þ r xð Þ, with deg r xð Þð Þ < u, where deg r xð Þð Þ is the degree of r(x). r(x) is the
residue of f(x) modulo g(x), and we write it as f xð Þ ¼ r xð Þ (mod g(x)). The multiplica-
tive group GF puð Þnf0g is cyclic, allowing the operation under multiplication easily.
Interested readers may refer to the Appendix in Hedayat, Sloane, and Stufken (1999)
for more details about Galois field.
We now propose a construction of generalized Hadamard matrix.

Lemma 3. Let q be a power of an odd prime, and a0, a1, :::, aq�1 be the elements of
GF(q), where a0 ¼ 0 and ai ¼ ai, i ¼ 1, :::, q� 1, for a primitive element a, in particular,
aq�1 ¼ aq�1 ¼ 1. Let C ¼ ða0, :::, aq�1Þ0,U ¼ ða20, :::, a2q�1Þ0 and 1q be the q� 1 vector

with all elements unity. Then

(i) M1 ¼
CC0 CC0 þ cU10q

CC0 þ b1qU
0 �CC0 þ d1qU

0 þ �U10q

 !
is an M2q, 2q;q

where b, c, d, �, � are any elements of GF(q) that satisfy the conditions

� is not a square in GF qð Þ, and � ¼ 1þ 4b� ¼ �

c
¼ �2 � 4d� (4)

(ii) if we take � ¼ a, b ¼ 1=2, c ¼ ða� 1Þ=ð2aÞ, d ¼ a=2, � ¼ ða� 1Þ=2 in M1, and
denote the resulting matrix by M, then both M and M0 are M2q, 2q;q’s, and so M is
a generalized Hadamard matrix;

(iii) let D1 ¼ ðd11, :::, d2q�1
1 Þ be the matrix obtained by omitting the first column of M,

then D1 is a balanced Dð2q; q2q�1Þ;
(iv) fNODðdi1, dj1Þ ¼ 2q� 4 for 1 � i 6¼ j � 2q� 1, which is the lower bound of

fNODðdi, djÞ for any two q-level columns di and dj of 2qð� q2Þ runs, and of course
there are no fully aliased columns in D1.

Let us illustrate the above method using the following example.

Example 2. If we take a¼ 2 as the primitive element of GF(3), then

� ¼ a ¼ 2, b ¼ 1
2
¼ 2 since 2� 2 ¼ 4 ¼ 1ð Þ, c ¼ a� 1

2a
¼ 1, d ¼ a

2
¼ 1, � ¼ a� 1

2
¼ 1

2
¼ 2

and a difference matrix M6, 6;3 can be obtained from Lemma 3:
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M ¼ 06,D1ð Þ ¼

0 0 0 0 0 0
0 1 2 1 2 0
0 2 1 1 0 2
0 2 2 0 1 1
0 0 1 2 2 1
0 1 0 2 1 2

0
BBBBBB@

1
CCCCCCA

where 0n is the n� 1 vector with all elements zero. Obviously, M is a generalized

Hadamard matrix, and D1 ¼ ðd11, :::, d51Þ is a Dð6; 35Þ with fNODðdi1, dj1Þ ¼ 2 for any i 6¼ j:

Remark 2. Theorem 6.6 of Hedayat, Sloane, and Stufken (1999) implies that there exists
a generalized Hadamard matrix M2q, 2q;q for any q ¼ 2v with v � 1: And Lemma 3(iv)
also holds for q ¼ 2v with v � 1:

Since the Kronecker sum of two difference matrices based on a same Abelian group
is also a difference matrix (see Lemma 6.38 of Hedayat, Sloane, and Stufken (1999)),
then combining Lemma 3 and Remark 2, we get the following result immediately.

Corollary 1. If q is a prime power, let M be the corresponding generalized Hadamard
matrix M2q, 2q;q in Lemma 3(ii) or Remark 2, then M�q M�q � � � �q Mk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k

is a generalized

Hadamard matrix M 2qð Þk, 2qð Þk;q for k � 1:

5. Construction of optimal SSDs

This section considers the construction of E fNODð Þ-optimal SSDs. From Lemma 2, we
know that the constant coincidence number between any two distinct rows of a design
yields E fNODð Þ-optimality. Therefore we present the following theorem which provides a
new construction of E fNODð Þ-optimal SSDs.

Theorem 2. If q is a prime power, let F be the design obtained by deleting the first col-
umn of the generalized Hadamard matrix Mð2qÞk, ð2qÞk;q in Corollary 1, then F is an

EðfNODÞ-optimal SSD Dðð2qÞk; qð2qÞk�1Þ with constant coincidence numbers k ¼
2kqk�1 � 1 and f ðFÞmax � ð2qÞ2ðk�1Þð2q� 4Þ for k � 1:

Example 3 (Example 2 continued). If we delete the first column of M constructed in

Example 2, an E fNODð Þ-optimal SSD D 6; 35ð Þ, say F, with k¼ 1 and f Fð Þ
max ¼ 2 can

be obtained.
E fNODð Þ-optimal D n; qmð Þ’s with constant coincidence numbers k constructed by

Theorem 2 are summarized in Table 3.
When k � 2, many column pairs are orthogonal for the designs constructed by

Theorem 2. Now we give a corollary for case k¼ 2.

Corollary 2. Let M be a generalized Hadamard matrix M2q, 2q;q generated via Corollary
1, and F be the matrix obtained by deleting the first column of M�q M, then F can be
partitioned into
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F ¼ F1, F2, :::, F2qð Þ (5)

where F1 is a 4q2 � 2q� 1ð Þ matrix and Fi is a 4q2 � 2q matrix for 2 � i � 2q. Let G1

be the new 4q2 � 2q� 1ð Þ matrix consisting of the 1st columns of F2, :::, F2q, and Gj be
the new 4q2 � 2q matrix consisting of the j� 1ð Þth column of F1 and the jth columns of
F2, :::, F2q, for j ¼ 2, :::, 2q. Then

(i) Fi and Gi are all OA 4q2, 2q, q, 2
� �

’s for 2 � i � 2q;
(ii) d1, Fið Þ is an OA 4q2, 2qþ 1, q, 2

� �
for 2 � i � 2q, where d1 is any column of F1;

(iii) g1,Gj
� �

is an OA 4q2, 2qþ 1, q, 2
� �

for 2 � j � 2q, where g1 is any column of G1.

Example 4. Let M be the generalized Hadamard matrix constructed in Example 2, then
according to Theorem 2, we can construct an E fNODð Þ-optimal D 36; 335ð Þ, i.e., F, with a
constant coincidence number 11 between any two distinct rows. This new SSD is listed
in Table A.3, where the columns labeled with Gj constitute the matrix Gj for j ¼ 1, :::, 6:
It can also be easily checked that d1, Fið Þ and g1,Gj

� �
are OA 36, 7, 3, 2ð Þ’s for i, j ¼

2, :::, 6: And Fi and Gi are all OA 36, 6, 3, 2ð Þ’s for i ¼ 2, :::, 6:

Note that the E fNODð Þ-optimal designs that can be constructed through Theorem 2
and Corollary 2 are all symmetrical ones. Now we introduce a method for constructing
E fNODð Þ-optimal mixed-level SSDs.

Corollary 3. Let D1 be an equidistant design with 2q runs, m columns and a constant
coincidence number k between any two distinct rows, where q is a prime power. Suppose
D2 ¼ c,D1ð Þ with c ¼ 0, 1, :::, 2q� 1ð Þ0, and there are no fully aliased columns in D2. Let
H ¼ 02q � D2, F2, :::, F2qð Þ, then

(i) the coincidence numbers between distinct rows of H take two values kþ 4q� 2
or mþ 1þ 2q;

(ii) design d�, Fið Þ is an OA 4q2, 2qþ 1, q2qs1, 2
� �

for i ¼ 2, :::, 2q, where d� is any col-
umn of 02q � D2 which is supposed to have s levels;

(iii) if jm� k� 2qþ 3j � 1, H is an E fNODð Þ-optimal SSD and

f Hð Þ
max � 4q2 �maxff D2ð Þ

max , 2 q� 2ð Þg
of course there are no fully aliased columns in H.

Besides the orthogonal columns in Corollary 3(ii), we know that there are many other
orthogonal columns in F2, :::, F2qð Þ from Corollary 2.

Example 5. Let D1 be the equidistant design D 6; 2133ð Þ with a constant coincidence
number 1 between any two distinct rows (c.f., Fang, Lin, and Liu 2003), and D2 ¼

Table 3. EðfNODÞ-optimal Dðn; qmÞ’s constructed by Theorem 2.
k n m q� k f ðFÞmax

1 2q 2q� 1 q 1 2q� 4

2 4q2 4q2 � 1 q 4q� 1 8q2ðq� 2Þ
k ð2qÞk ð2qÞk � 1 q 2kqk�1 � 1 ð2qÞ2ðk�1Þð2q� 4Þ
�q is any prime power and q 6¼ 2; when q¼ 2 the resulting designs reduce to OAs.
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c,D1ð Þ with c ¼ 0, 1, :::, 5ð Þ0, then H ¼ 06 � D2,D3ð Þ is an E fNODð Þ-optimal SSD

D 36; 2133361
� �

with constant coincidence numbers 11, where D3 consists of the last 30
columns of the E fNODð Þ-optimal D 36; 335ð Þ F in Table A.3.

Some new E fNODð Þ-optimal mixed-level SSDs constructed by Corollary 3 are listed in
Table 4.

6. Concluding remarks

This paper proposes some methods to construct E fNODð Þ-optimal SSDs, where the gen-
eralized Hadamard matrices play a key role in the construction. From Theorem 6.6 of
Hedayat, Sloane, and Stufken (1999), we know that, for any prime p and integers m �
n � 1, generalized Hadamard matrix Mpm , pm;pn exists. In addition, there are many gener-
alized Hadamard matrices on the website http://support.sas.com/techsup/technote/ts723.
html maintained by Dr. W.F. Kuhfeld. Thus many E fNODð Þ-optimal SSDs can be
obtained. It is important to emphasize that the generalized Hadamard matrices con-
structed by Corollary 1 have no fully aliased columns and the non-orthogonality can be
well controlled. But for the generalized Hadamard matrices from Hedayat, Sloane, and
Stufken (1999) or http://support.sas.com/techsup/technote/ts723.html, they may have
fully aliased columns. Thus when using a generalized Hadamard matrix that cannot be
constructed here to generate E fNODð Þ-optimal SSDs based on the proposed methods, the
generalized Hadamard matrix must be chosen carefully.
As for the analysis of SSDs, there are many methods proposed in the literature. In the

review paper, Georgiou (2014) provided an informative review on the analysis of SSDs up
until 2012. Interested readers can refer to Georgiou (2014) and the the references therein.
One can also refer to some recent papers, such as Chen, Weng, and Chu (2013) for a
screening procedure using a Bayesian variable selection method, Koukouvinos and Parpoula
(2015) for a penalized wrapper method, Balakrishnan, Koukouvinos, and Parpoula (2015)
for a method for analyzing data on discrete response regression models, and Drosou and
Koukouvinos (2019) for a method based on the support vector machine.
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Appendix A. Proofs and some large tables

A.1. Proof of Theorem 1

Equation (3a) is well-known for standard construction of OAs from difference matrices, and
Equation (3a) is clear from the adding column technique here.

For Equation (3c), let n�a, b be the number of (a, b)-pairs in m1 �q
d1,m2 �q d2

	 

, na, b be the

number of (a, b)-pairs in d1, d2ð Þ, and

m1,m2ð Þ ¼ x1 x2 � � � xlq
y1 y2 � � � ylq

� �0

Then,

fNOD m1 � d1,m2 � d2ð Þ

¼
X
a2G

X
b2G

n�a, b �
lqn
q2

� �2

¼
X
a2G

X
b2G

n�2a, b � l2n2

¼
X
a2G

X
b2G

na�x1, b�y1 þ na�x2, b�y2 þ � � � þ na�xlq , b�ylqð Þ2 � l2n2

�
X
a2G

X
b2G

lq n2a�x1, b�y1 þ n2a�x2, b�y2 þ � � � þ n2a�xlq , b�ylq

	 

� l2n2

¼ lq
X
a2G

X
b2G

n2a�x1, b�y1 þ n2a�x2, b�y2 þ � � � þ n2a�xlq , b�ylq

	 

� l2n2

¼ lq
X
a2G

X
b2G

lqn2a, b � l2n2 ¼ l2q2
X
a2G

X
b2G

n2a, b �
n2

q2

 !

¼ l2q2fNOD d1, d2ð Þ
In addition,

fNOD 0lq �q d
1, 0lq �q d

2
� � ¼X

a2G

X
b2G

n�a, b �
lqn
q2

� �2

¼
X
a2G

X
b2G

lqna, b � lqn
q2

� �2

¼ l2q2
X
a2G

X
b2G

na, b � n
q2

� �2

¼ l2q2fNOD d1, d2ð Þ

Thus we complete the proof.
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A.2. Proof of Lemma 3

Part (i) can be obtained from the proof of Theorem 6.33 in Hedayat, Sloane, and Stufken (1999).
In addition, part (ii) is also evident from Equation (6.8) of the same book.

Part (iii) follows from the fact that M is a difference matrix with all elements zero in the
first column.

For part (iv), note that for D1, the number of runs 2q is less than q2, we need only to show

that there are no duplicate rows in ðdi1, dj1Þ, where di1 and dj1 are any two different columns of

D1, then the value of fNODðdi1, dj1Þ can be directly calculated, and the lower bound can be found
in Theorem 1(iii) of Fang, Ge, and Liu (2004a). In fact, suppose the r1th and r2th rows in

ðdi1, dj1Þ are the same, then there are at least three zeros in the vector difference between the r1th
and r2th columns of M0, by noting that the elements in the first column of M0 are all zeros, this
contradicts the fact that M0 is an M2q, 2q;q:

A.3. Proof of Theorem 2

By recursively using the result of Proposition 1 to the generalized Hadamard matrix
M�q � � � �qM|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

k

in Corollary 1, and by noting that F is obtained by deleting the first column of

this matrix, we can directly obtain that F has a constant coincidence number k ¼ 2kqk�1 � 1
between any two distinct rows, and thus it is an EðfNODÞ-optimal SSD (c.f., Lemma 2). Also, it

can be easily verified that f ðFÞmax � ð2qÞ2ðk�1Þð2q� 4Þ for k � 1:

A.4. Proof of Corollary 2

Assertion (i) follows from Lemma 6.12 of Hedayat, Sloane, and Stufken (1999), and (ii) and (iii)
follow from Theorem 1.

A.5. Proof of Corollary 3

Write H ¼ ðH1,H2Þ ¼ ð02q � D2, F2, :::, F2qÞ:

(i) The coincidence number between any two distinct rows of H follows by calculating that
of the corresponding rows of H1 and H2, respectively.

(ii) Let f � be any column of Fi, we need only to show that d� and f � are orthogonal to each
other. In fact this is true by noting that

d�, f �ð Þ ¼

d a0 �q f

d a1 �q f

..

. ..
.

d aq�1 �q f

0
BBBBB@

1
CCCCCA

which is obviously an OA with two columns, where d and f are some balanced columns.
(iii) The conclusion follows from Lemma 2 and Theorem 2.

2576 M. LI ET AL.



A.6. Some large tables

Table A.1. The Dð32; 428Þ obtained via the Kronecker sum of the Dð8; 47Þ and M4, 4;4:

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 00 11 11 00 10 10 00 00 11 11 00 10 10 00 00 11 11 00 10 10 00 00 11 11 00 10 10 00
2 01 01 00 11 01 10 10 01 01 00 11 01 10 10 01 01 00 11 01 10 10 01 01 00 11 01 10 10
3 11 10 10 00 00 01 10 11 10 10 00 00 01 10 11 10 10 00 00 01 10 11 10 10 00 00 01 10
4 11 00 11 10 01 00 01 11 00 11 10 01 00 01 11 00 11 10 01 00 01 11 00 11 10 01 00 01
5 10 00 01 11 11 01 00 10 00 01 11 11 01 00 10 00 01 11 11 01 00 10 00 01 11 11 01 00
6 01 11 01 01 00 11 01 01 11 01 01 00 11 01 01 11 01 01 00 11 01 01 11 01 01 00 11 01
7 10 10 00 01 10 00 11 10 10 00 01 10 00 11 10 10 00 01 10 00 11 10 10 00 01 10 00 11
8 00 01 10 10 11 11 11 00 01 10 10 11 11 11 00 01 10 10 11 11 11 00 01 10 10 11 11 11
9 00 11 11 00 10 10 00 01 10 10 01 11 11 01 10 01 01 10 00 00 10 11 00 00 11 01 01 11
10 01 01 00 11 01 10 10 00 00 01 10 00 11 11 11 11 10 01 11 00 00 10 10 11 00 10 01 01
11 11 10 10 00 00 01 10 10 11 11 01 01 00 11 01 00 00 10 10 11 00 00 01 01 11 11 10 01
12 11 00 11 10 01 00 01 10 01 10 11 00 01 00 01 10 01 00 11 10 11 00 11 00 01 10 11 10
13 10 00 01 11 11 01 00 11 01 00 10 10 00 01 00 10 11 01 01 11 10 01 11 10 00 00 10 11
14 01 11 01 01 00 11 01 00 10 00 00 01 10 00 11 01 11 11 10 01 11 10 00 10 10 11 00 10
15 10 10 00 01 10 00 11 11 11 01 00 11 01 10 00 00 10 11 00 10 01 01 01 11 10 01 11 00
16 00 01 10 10 11 11 11 01 00 11 11 10 10 10 10 11 00 00 01 01 01 11 10 01 01 00 00 00
17 00 11 11 00 10 10 00 10 01 01 10 00 00 10 11 00 00 11 01 01 11 01 10 10 01 11 11 01
18 01 01 00 11 01 10 10 11 11 10 01 11 00 00 10 10 11 00 10 01 01 00 00 01 10 00 11 11
19 11 10 10 00 00 01 10 01 00 00 10 10 11 00 00 01 01 11 11 10 01 10 11 11 01 01 00 11
20 11 00 11 10 01 00 01 01 10 01 00 11 10 11 00 11 00 01 10 11 10 10 01 10 11 00 01 00
21 10 00 01 11 11 01 00 00 10 11 01 01 11 10 01 11 10 00 00 10 11 11 01 00 10 10 00 01
22 01 11 01 01 00 11 01 11 01 11 11 10 01 11 10 00 10 10 11 00 10 00 10 00 00 01 10 00
23 10 10 00 01 10 00 11 00 00 10 11 00 10 01 01 01 11 10 01 11 00 11 11 01 00 11 01 10
24 00 01 10 10 11 11 11 10 11 00 00 01 01 01 11 10 01 01 00 00 00 01 00 11 11 10 10 10
25 00 11 11 00 10 10 00 11 00 00 11 01 01 11 01 10 10 01 11 11 01 10 01 01 10 00 00 10
26 01 01 00 11 01 10 10 10 10 11 00 10 01 01 00 00 01 10 00 11 11 11 11 10 01 11 00 00
27 11 10 10 00 00 01 10 00 01 01 11 11 10 01 10 11 11 01 01 00 11 01 00 00 10 10 11 00
28 11 00 11 10 01 00 01 00 11 00 01 10 11 10 10 01 10 11 00 01 00 01 10 01 00 11 10 11
29 10 00 01 11 11 01 00 01 11 10 00 00 10 11 11 01 00 10 10 00 01 00 10 11 01 01 11 10
30 01 11 01 01 00 11 01 10 00 10 10 11 00 10 00 10 00 00 01 10 00 11 01 11 11 10 01 11
31 10 10 00 01 10 00 11 01 01 11 10 01 11 00 11 11 01 00 11 01 10 00 00 10 11 00 10 01
32 00 01 10 10 11 11 11 11 10 01 01 00 00 00 01 00 11 11 10 10 10 10 11 00 00 01 01 01
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